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Effects of perinatal exposure to polychlorinated biphenyls
(PCBs) on auditory P300 latencies and amplitudes were
evaluated in children from a Rotterdam cohort. From this
cohort of healthy, term babies, the 26 lowest and 26 highest
prenatally PCB-exposed children from the breastfed and the
formula-fed groups (n=104) were invited for P300 assessment
when they were 9 years of age. For P300 assessment an auditory
simple odd-ball paradigm was used. In the 83 participating
children, 60 assessments (32 males, 28 females) satisfied the
measurement criteria and were included in the data analyses.
After adjusting for confounding variables, children with high
prenatal exposure were found to have longer P300 latencies
than children with low prenatal exposure. Lactational exposure
to PCBs through breastfeeding milk was not related to P300
latencies. P300 latencies were shorter in children breast-fed for
at least 16 weeks than in children breastfed for 6 to 16 weeks
and formula-fed children. P300 amplitudes were not related to
perinatal PCB exposure nor breastfeeding. Results of this
exploratory study suggest that prenatal exposure to
environmental levels of PCBs and related compounds delays
mechanisms in the central nervous system that evaluate and
process relevant stimuli, whereas breastfeeding accelerates
these mechanisms.

Polychlorinated biphenyls (PCBs) and dioxins are toxic com-
pounds that are detectable in human milk and tissues and are
present because of background exposure to these environ-
mental pollutants. The foetus is exposed to maternal levels of
these compounds through placental transport. Additionally, a
breastfed infant is exposed to relatively large amounts of PCBs
and dioxins in breast milk (Patandin et al. 1997). These
compounds are well known for their neurotoxic properties,
although the neurotoxic mechanisms of PCBs and dioxins
remain largely unknown. Many systems and levels of the devel-
oping central nervous system (CNS) have been reported to be
involved in the complex mechanism of the neurotoxic action
of PCBs and dioxins (Brouwer et al. 1995, Tilson and Kodavanti
1998). These include neuronal and glial cells (Seegal and Shain
1992, Morse et al. 1996), brain neurotransmitters (Seegal et
al. 1989, 1991; Mariussen and Fonnum 2001), and several hor-
mone systems (Weisglas-Kuperus 1998, Brouwer et al. 1999),
depending on the type of congener and its metabolites.

Human epidemiological studies have provided accumu-
lating evidence for the neurotoxic effects of predominantly
prenatal exposure to PCBs by showing relations between
exposure levels and neurodevelopmental outcome. In these
cohort studies it was suggested that there were delayed effects
of prenatal exposure to PCBs on general cognitive and motor
development (Jacobson et al. 1990, Jacobson and Jacobson
1996, Koopman-Esseboom et al. 1996, Patandin et al. 1999,
Walkowiak et al. 2001, Vreugdenhil et al. 2002), processing
speed and attention (Jacobson et al. 1992, Jacobson and
Jacobson 1996, Vreugdenhil et al. 2004), memory (Jacobson
et al. 1990), verbal comprehension (Jacobson and Jacobson
1996, Patandin et al. 1999), and planning skills (Vreugdenhil
et al. 2004).

Neurophysiological techniques might provide a more direct
evaluation of CNS function than neurodevelopmental tests.
Moreover, the measurement of event-related brain potentials
(ERPs), and especially the cognitive P300 component, is a
useful tool for investigating cognitive function (Pritchard
1981, Magliero et al. 1984, Polich and Herbst 2000). ERPs
result from intracortical currents induced by excitatory and
inhibitory postsynaptic potentials that are triggered by the
release of neurotransmitters. The P300 component is a posi-
tive ERP that occurs with a latency of about 300ms when a per-
son is actively processing (‘attending to’) incoming stimuli
(Sutton et al. 1965). The latency of the P300 is considered to
be an indicator of the neural activity underlying the processes
of attention allocation and immediate memory (Polich and
Herbst 2000) and a measure of stimulus classification speed
(Kutas et al. 1977, Polich 1986). The amplitude of the P300 is
assumed to reflect the quality with which incoming informa-
tion is processed when it is incorporated into its memory rep-
resentations and the context in which the stimulus occurs
(Polich and Herbst 2000).

In adults, the amplitude and latency of the P300 can dis-
criminate brain pathology from control conditions, including
occupational exposure to neurotoxic chemicals such as organic
solvents (Morrow et al. 1992, 1998; Steinhauer et al. 1997),
specific neuropathological states such as Alzheimer’s disease
(Neshige et al. 1988), closed-head injury (Papanicolaou et al.
1984, Keren et al. 1998), psychiatric disorders such as schizo-
phrenia (Ford et al. 1999, Blackwood 2000), and depression
(Bruder et al. 1995, Yanai et al. 1997).

In children, P300 abnormalities have been associated with
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several pathologies including cognitive dysfunction (Finley
et al. 1985, Kaneko et al. 1996), attention-deficit disorders
(Holcomb et al. 1985, Satterfield et al. 1990), and dyslexia
(Taylor and Keenan 1990). Moreover, the latency and ampli-
tude of the P300 decrease and increase respectively with age,
until adolescence, reflecting maturation processes in the CNS
(Martin et al. 1988, Polich et al. 1990, Sangal et al. 1998).

Effects of prenatal exposure to PCBs and dioxins on the
P300 have been addressed in the Yu Cheng, Taiwan cohort
(Chen and Hsu 1994), consisting of children born to moth-
ers that were accidentally exposed to high levels of PCBs and
polychlorinated dibenzofurans. In the prenatally exposed
children, auditory P300 latencies were prolonged, and
amplitudes were lower than in non-exposed matched con-
trols. In that study, visual and short-latency somatosensory
evoked potentials were not different for the groups (Chen
and Hsu 1994).

In the Netherlands, a prospective study into the effects of
perinatal exposure to PCBs and dioxins on neurodevelopment
was launched in 1989. Half of this population of children was
breastfed during infancy and the other half was formula-fed. In
this cohort, neurotoxic effects of perinatal exposure to envi-
ronmental levels of PCBs and dioxins have been addressed
from birth to school age.

The aim of the present study was to gain more insight into
the neurotoxic mechanism of perinatal exposure to PCBs by
exploring effects on a more direct measurement of CNS func-
tioning: the P300 ERPs.

Method
PARTICIPANTS AND STUDY DESIGN

The original study population consisted of 207 healthy
Caucasian mother–infant pairs who were recruited from June
1990 to February 1992 in the area of Rotterdam, a highly
industrialized and densely populated area in the Netherlands.
The study design and recruitment process, chemical analysis,
and measurement of PCBs and dioxin concentrations have
been described in detail elsewhere (Koopman-Esseboom et
al. 1994a). Pregnancy and delivery were uncomplicated. Only
first or second healthy children born at term were included.
One hundred and five children were breastfed for at least 6
weeks and 102 children were formula-fed during infancy. All
formula-fed infants received formula from a single batch
(Almiron M2; Nutricia NV, Zoetermeer, the Netherlands) from
birth until 7 months of age. Concentrations of PCBs and diox-
ins were undetectable in this formula.

We invited 104 nine-year-old children of the Rotterdam
cohort, the 26 lowest and 26 highest prenatally exposed 
children (based on the sum of PCBs in maternal plasma

[∑PCBmaternal]) from each feeding group, to participate in a
follow-up assessment in the Sophia Children’s Hospital in
Rotterdam. Children were not eligible for selection if they
had not participated in the follow-up at 3 years 6 months or 7
years of age, or if they had moved from the Rotterdam area,
because families had to visit the hospital for the assessment.

The medical ethics committee of the University Hospital
Rotterdam/Sophia Children’s Hospital approved the study
design and parents gave informed consent.

AUDITORY EVENT-RELATED POTENTIALS

An auditory simple odd-ball paradigm was used to elicit the
P300 component. Two different sinusoidal tone bursts of two
frequencies (1kHz tone, 70dB normal hearing level, 50ms
duration, 5ms rise/fall time [non-target]; or 1.5kHz tone,
70dB normal hearing level, 66.7ms duration, 6.7ms rise/fall
time [target]), using a fixed 1.25-second interstimulus interval,
were presented binaurally through earphones in pseudo-ran-
domized order. Twenty per cent of these tones were targets
(1.5kHz) and 80% were non-targets (1kHz); the software pack-
age used was Nicolet Viking (version 4.7.1b). Children were
required to lie on a bed and press a hand-held button as quick-
ly as possible in response to target stimuli. ERPs were recorded
with Ag/AgCl electrodes placed over the midline frontal (Fz),
central (Cz), and parietal (Pz) positions referred to linked
ears, with forehead ground. Eye movements and blink arte-
facts were differentially recorded by two electrodes, one lat-
eral inferior to the right eye and the other superior to the left
eye. Raw potentials were filtered, with the bandpass set at 0.5
to 30Hz. Artefact rejection at 9µV was used.

Averaging proceeded until 48 (target) and 192 (non-target)
stimuli were accepted. Children were presented two series of
48 successfully averaged target stimuli, and 192 non-target
stimuli. Because of artefact rejection (caused by restlessness or
tension) in 23 children, the assessment took too long to com-
plete averaging; these measurements were not included in the
data analysis.

ERP-WAVEFORM ANALYSIS

The ERP waveforms were labelled conventionally. For the pur-
pose of this study, the P300 peak was identified in the individ-
ual recordings, generally in the first ERP assessment, by two
raters who were unaware of the child’s exposure levels and
type of feeding during infancy. The P300 was identified as the
largest positive peak in the area of 250 to 450ms (Fig. 1). The
latency and amplitude of the P300 peak at the Fz, Cz, and Pz
positions were used as outcome variables. For each exposure
group, separate grand-average ERP waveforms were calculated
for the three electrode recordings (Fz, Cz, and Pz).

Table I: Characteristics of children with complete and incomplete event-related potentials (ERPs) assessments and of non-
participants

Characteristic ERP complete (n=60) ERP incomplete (n=23) Non-participants (n=21)

∑PCBmaternal, median (range) µg/l 2.54 (0.59–4.71) 1.71 (0.80–5.08) 2.63 (0.73–7.35)

Nr of ∑PCBlow,n (%) 28 (46.7) 14 (60.9) 10 (57.1)

Nr of BF, n (%) 32 (53.3) 12 (52.2) 9 (42.9)

∑PCBmaternal, sum of PCB congeners (International Union of Pure and Applied Chemistry numbers 118, 138, 153 and 180) in maternal plasma;
∑PCBlow, number of children with low levels of prenatal PCB exposure.



ASSESSMENT OF EXPOSURE VARIABLES

Plasma samples were collected from the mothers during the
last month of pregnancy and cord plasma samples were col-
lected directly after birth. These samples were analyzed for
four PCB congeners: International Union of Pure and Applied
Chemistry (IUPAC) numbers 118, 138, 153, and 180. Two
weeks after delivery a 24-hour representative breast-milk sam-
ple was collected from the mothers who were breastfeeding
their children. Breast-milk samples were analyzed for 17 diox-
ins (polychlorinated dibenzodioxins and polychlorinated
dibenzofurans), 6 dioxin-like PCBs (IUPAC numbers 77, 105,
118, 126, 156, and 169), and 20 non-dioxin-like PCBs (IUPAC
numbers 28, 52, 66, 70, 99, 101, 128, 137, 138, 141, 151, 153,
170, 177, 180, 183, 187, 194, 195, and 202). The toxic poten-
cy of the mixture of dioxins and dioxin-like PCBs was
expressed by using the toxic equivalent factor approach (Van
den Berg et al. 1998).

In the present study, we compared the outcome of a
group exposed to low levels of PCBs with that of a group
exposed to high levels, based on the sum of the four PCB
congeners measured in maternal plasma, (∑PCBmaternal).

ASSESSMENT OF CONFOUNDING VARIABLES

Variables that may influence child neurodevelopment were
assessed, they included birthweight, duration of gestation,
foetal exposure to alcohol and cigarette smoke, parity, type
of feeding during infancy, duration of breastfeeding, sex, and

parental education level. The child’s home environment was
assessed by the Home Observation for Measurement of the
Environment (HOME; Caldwell and Bradley 1984) during
the home visit for the follow-up at 7 years of age. Verbal IQ of
the parent who spent the most time with the child (usually
the mother) was assessed by the Information and Vocabulary
subtests from the Dutch version of the Wechsler Adult
Intelligence Scale (Stinissen et al. 1970).

DATA ANALYSIS

To compare the groups for a single variable we used Student’s
t-test, the Mann–Whitney U test, or the χ2 test for continuous
variables with a Gaussian-shaped distribution, categorical
ordinal variables, or categorical nominal variables. The differ-
ence in outcome between the groups with low and high pre-
natal exposures was studied by means of multiple linear
regression analyses (SPSS, version 10). Variables that were
likely to affect P300 outcome (latency or amplitude) were
included in the regression model as a fixed set of variables.
These variables were as follows: sex (0/1: male/female); high-
est education level of either parent (0/1/2: primary school, sec-
ondary school not finished/secondary school finished/high
school finished, professional and university training); type of
feeding and duration of breastfeeding (captured in two dummy
variables for formula-feeding, BFshort: 6 to 16 weeks of breast-
feeding, BFlong:≥16 weeks of breastfeeding); and age at exami-
nation. Additionally, confounding variables, namely variables
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Table II: Parent’ characteristics and characteristics of children with low (∑PCBlow)and high (∑PCBhigh)prenatal exposure to PCBs with
complete event-related brain potentials assessment

Characteristic ∑PCBlow (n=28) ∑PCBhigh (n=32)

Nr of mothers who smoked during pregnancy, n (%) 7 (25) 8 (25)
Nr of mothers who used alcohol during pregnancy, n (%)a 2 (7) 9 (28)
Birthweight, mean (SD) kg 3406 (404) 3344 (535)
Gestational age, mean (SD) wk 40.2 (1.1) 39.7 (1.3)
Nr breastfed, n (%) 13 (46) 19 (59)
Duration of breastfeeding, median (range) wk 16 (6–40) 16 (6–62)
Nr of males, n (%) 13 (46) 19 (59)
Nr of first born, n (%) 15 (54) 16 (50)
Maternal age, mean (SD) yb 27.3 (3.0) 31.7 (3.3)
Parental education levelb

Low (primary school, secondary school unfinished), n (%) 8 (29) 1 (3)
Medium (secondary school finished), n (%) 12 (43) 13 (41)
High (high school finished, professional and/or university training), n (%) 8 (29) 18 (56)

Parental Verbal IQ, mean (SD)b 117 (16.6) 127.2 (14.8)
HOME score at 7 years, mean (SD) 47.8 (2.6) 48.5 (2.8)
Age of child at assessment, mean (SD) y 9.2 (0.2) 9.2 (0.2)
Exposure variables

∑PCBmaternal, median (range) µg/Lb 1.4 (0.59–1.93) 3.2 (2.51–4.71)
∑PCBcord, median (range) µg/Lb 0.3 (0.08–0.63) 0.58 (0.29–1.98)
∑PCBmilk, median (range) µg/kg fatb 242.5 (173.7–371.1) 572.4 (333.6–804.5)
∑PCB20 non-dioxin-like, median (range) µg/kg fatb 255.2 (204.6–466.1) 608.5 (347.2–858.1)

Total TEQ, median (range) ng/kg fatb 43.8 (28.06–88.20) 84.05 (58–111.41)

Significance levels: ap<0.05, bp<0.01 (Student’s t–test, Mann-Whitney U, or χ2 test). Parental Verbal IQ was taken as score on two subtests of
Wechsler Adult Intelligence Scale, Information and Vocabulary (Stinissen et al. 1970), assessed on one parent; HOME, Home Observation for the
Measurement of the Environment; ∑PCBmaternal, ∑PCBcord, ∑PCBmilk, sum of PCB congeners (International Union of Pure and Applied Chemistry
[IUPAC] numbers 118, 138, 153, and 180 in mother, cord plasma, and in breast milk; ∑PCB20 non-dioxin-like, sum of 20 non-dioxin-like PCBs in breast
milk; Total TEQ, sum of toxic equivalents according to 1997 WHO toxic equivalency factors for mono-ortho-PCBs (IUPAC numbers 105, 118, and
156) planar PCBs (IUPAC numbers 77, 126, and 169) and seventeen 2,3,7,8-substituted polychlorinated dibenzodioxins and polychlorinated
dibenzofurans.



that were correlated (p<0.2), adjusted for the fixed set of vari-
ables with the exposure variable (∑PCBlow/high) and with one
of the outcome variables, were added to the regression model.
Candidate confounders were alcohol use (0/1: no/yes) and
smoking during pregnancy (0/1: no/yes), duration of gesta-
tion, birthweight, parity (0/1: first/second born), parental ver-
bal IQ, and HOME score. This procedure resulted in the
following set of explanatory variables included in the regres-
sion model for P300 outcome variables: ∑PCBlow/high, alcohol
use during pregnancy, sex, type of feeding and duration of
breastfeeding, parental education level, and age at assess-
ment. Results were considered significant at p≤0.05.

Results
From the invited children (n=104), 83 (80%) were willing to
participate (ages 8 years 9 months to 9 years 7 months; mean 9
years 2 months, standard deviation [SD] 0.2). Parents of 21
children were not motivated to participate in this follow-up
for which they had to visit the hospital. Exposure levels in par-
ticipating and non-participating children were comparable.
From the 83 children in whom ERP assessments were per-
formed, 60 measurements were complete (i.e. 48 accepted tar-
get stimuli) and were included in the data analyses. In Table I
prenatal exposure levels, the number of children with low and
high exposure, and the type of feeding are presented for the
included and excluded children, as well as the children who
were not willing to participate in this study. The three groups
did not show statistical differences in these variables.

The characteristics of the children with low and high expo-
sure whose ERP measurements were included in the data
analyses are presented in Table II. As described in more detail
previously (Vreugdenhil et al. 2002), parental education level
and Verbal IQ were significantly higher in the group of children

with high exposure than in the low-exposure group. All pre-
natal exposure measurements of PCBs and dioxins were
significantly higher in the high-exposure group, which is
inherent in the study design. In Table III, the mean latency
and amplitude of the P300 are shown for the groups with low
and high prenatal exposures and for the breastfed and formu-
la-fed groups of children.

Grand averages of the ERP waveforms are presented for
the two exposure groups, not adjusted for confounding dif-
ferences between the exposure groups, in Figure 1. The
grand-average waveform for the low-exposure group showed
a better peak pronunciation than the grand-average wave-
form for the high-exposure group, especially in the parietal
and central (data not shown) recordings. The P300 latency of
high-exposure children was prolonged in comparison with
that of the low-exposure children.

Results of multiple regression analyses on the P300 peak
latencies are presented in Table IV. Especially for the Cz and the
Pz recordings, the P300 latencies were significantly longer in
children with high prenatal exposure than in those with
low exposure, after adjustment for confounding variables.
Moreover, for the Fz, Cz, and Pz recordings, children who were
breastfed for a long period (BFlong) had significantly shorter
P300 latencies than children that were breastfed for a short
period (BFshort). For the Pz recording, BFlong children also had a
shorter P300 latency than formula-fed children. P300 ampli-
tudes were not statistically different for children with low and
high exposures, nor for the three feeding groups, when adjust-
ed for confounding variables.

To estimate effects of postnatal exposure through lactation,
the group of breast-fed children was divided into four groups
based on prenatal exposure levels (high or low) and duration
of breastfeeding (BFshort: less than 16 weeks; BFlong: 16 weeks
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Table IV: Adjusted mean differences between groups resulting from multiple regression analysis of P300 latencies (ms) measured
at midline frontal (Fz), central (Cz), and parietal (Pz) positions

Position ∑PCBhigh versus ∑PCBlow BFshort versus FF BFlong versus FF BFlong versus BFshort

Diff. SE p Diff. SE p Diff. SE p Diff. SE p

P300Fz 14.3 9.5 0.140 15.0 10.5 0.160 –19.8 10.8 0.073 –34.7 12.1 0.006

P300Cz 25.6 9.6 0.011 13.0 10.6 0.229 –20.2 10.9 0.070 –33.2 12.2 0.009

P300Pz 22.0 9.4 0.023 12.0 10.3 0.251 –22.5 10.6 0.039 –34.5 11.9 0.005

Values are adjusted for foetal exposure to alcohol, sex, parental education, and age at assessment. Differences were estimated in essentially
same regression model by reparameterizing effects of three categories for duration of breastfeeding (formula-fed [FF], breastfed (BF) for 6 to
16 weeks [BFshort], or breastfed for 16 weeks or longer [BFlong]). Diff., difference; SE, standard error; ∑PCBlow,/∑PCBhigh, children with
low/high exposure to PCBs.

Table III: Mean (SD) P300 latencies and amplitudes for low-exposure (∑PCB low) and high exposure (∑PCB high) children breastfed
and formula fed

Variables Frontal position Central position Parietal position

Latency (ms) Amplitude (µV) Latency (ms) Amplitude (µV) Latency (ms) Amplitude (µV)

∑PCBlow 333 (28) 5 (4) 327 (29) 6 (4) 327 (27) 8 (4)

∑PCBhigh 339 (40) 7 (4) 341 (41) 8 (3) 339 (41) 8 (4)

Breastfed 334 (35) 6 (4) 332 (36) 7 (4) 330 (35) 8 (3)

Formula-fed 338 (34) 5 (4) 337 (37) 7 (4) 337 (36) 8 (4)



or longer). In Figure 2 the mean adjusted latencies measured
on Pz are presented for these four groups and for the formula-
fed groups with low and high exposure; the significant differ-
ences in mean adjusted latencies between the six feeding
groups are indicated. Low-exposure BFlong children (E) had
significantly shorter P300 latencies than their high-exposure
(Fz, p=0.013; Cz, p=0.002; Pz, p=0.005) (E′) and low-expo-
sure (Fz, p=0.040; Cz, p=0.046; Pz, p=0.114) BFshort counter-
parts. In the high-exposure BFlong group (F), latencies were
also generally shorter than in BFshort children with high expo-
sure (Fz, p=0.061; Cz, p=0.086; Pz, p=0.021) (F′).

Discussion
In this exploratory study, children with high prenatal expo-
sure to PCBs showed prolonged P300 latencies compared
with children with low exposure to PCBs. Moreover, a longer
breastfeeding duration was related to shorter P300 latencies
compared with a shorter duration of breastfeeding and the
formula-fed condition. The P300 amplitudes were not statis-
tically different for the high and low exposure groups nor for
the three feeding groups. These results suggest that prenatal
PCB exposure is related to slower CNS mechanisms that eval-
uate and process relevant stimuli, whereas a long duration of
breastfeeding accelerates these mechanisms.

In the Yu Cheng cohort (Chen and Hsu 1994), delayed P300
latencies have been reported in 7- to 12-year-old children who
were accidentally exposed to relatively high prenatal levels of
PCBs and polychlorinated dibenzofurans. Although the expo-
sure levels we describe are expected to be much lower than in
the Yu Cheng study, the difference in P300 latency between the
exposed group and the control group in the Yu Cheng study
(Cz, 26.7ms; Pz, 25.2ms; Chen and Hsu 1994) and between
PCBhigh and PCBlow (Cz, 25.6ms; Pz, 22.0ms) in the present
study are equal within the measurement error. In the Lake
Michigan cohort at 11 years of age (Jacobson and Jacobson

1996; an American cohort in which neurodevelopmental
effects of perinatal exposure to environmental levels of PCBs
were addressed), the magnitude of effects of prenatal exposure
to PCBs on IQ was also comparable to the difference seen in
exposed and non-exposed children in the Yu Cheng study.

In contrast to the Yu Cheng study, in the present study the
P300 amplitude was not statistically different for the two
exposure groups. The latency of the P300 is considered to be
an indicator of the neural activity underlying the processes
of attention allocation and immediate memory (Polich and
Herbst 2000) and a measure of stimulus classification speed
(Kutas et al. 1977, Polich 1986). The amplitude of the P300 is
assumed to reflect the quality with which incoming informa-
tion is processed when it is incorporated into its memory rep-
resentations and the context in which the stimulus occurs
(Polich and Herbst 2000). The amplitude is, among other
other things, considered to be related to the discrepancy
between the expected and actual stimulus properties,
whereas the latency reflects the duration of the stimulus-
evaluation process. Specific neuropathological states and
their cognitive deficits seem to be more often related to pro-
longed latency of P300 (Neshige et al. 1988; Polich 1989,
1991; Morrow et al. 1992, 1996), whereas decrements in
P300 amplitude are more often associated with the presence
of psychiatric disorders such as schizophrenia (Ford 1999,
Jeon and Polich 2001) and depression (Blackwood et al.
1987, Bruder 1992, Yanai et al. 1997). We hypothesize that
the difference in the observed effects of prenatal exposure to
PCBs on the P300 amplitude in the Yu Cheng cohort and in
the Dutch PCB/dioxin cohort might reflect differences in
exposure levels and mixture content or subtle differences
in the assessment of the P300. For example, the interstimulus
interval that was applied in the Yu Cheng study was larger (2.5
seconds vs 1.25 seconds in the Dutch study), which might have
caused larger P300 amplitudes.

Correlation analysis of the P300 outcome variables and neu-
ropsychological outcome variables that were assessed during
the same follow-up session (namely the Rey Complex Figure
Task, the Auditory–Verbal Learning Test, Simple Reaction Time
Task, and the Tower of London Test; Vreugdenhil et al. 2004)
showed no statistically significant interrelationships. However,
ERPs are believed to measure only a fraction of the neural activ-
ity associated with stimulus processing and do not measure the
more elaborated neuronal processes of cognitive processes
(Rugg and Coles 1995).

The effect of a longer duration of breastfeeding on the P300
latency might suggest positive effects of substances in breast
milk, such as long-chain polyunsaturated fatty acids, that stim-
ulate brain development. The brain is 60% structural lipid and
uses arachidonic acid and docosahexaedonic acid, which are
deposited in the non-myelin membranes of the developing
nervous system and are believed to be essential for the growth,
function, and integrity of the CNS (Uauy et al. 2001, Uauy and
Mena 2001). These acids were not available for formula-fed
children, and children who were breastfed for a shorter period
may have received smaller amounts of these compounds than
children who were breastfed for a longer period. These results
illustrate the complexity of risk assessment of exposure to
environmentally persistent compounds, especially with
regard to breastfeeding. Assessment of more specific cogni-
tive functions might help to refine our knowledge of the neu-
rotoxic effects of early exposure to PCBs and dioxins at
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Figure 1: Grand-average event-related brain potentials at Pz

for children with prenatal low (broken line) and high (solid

line) exposures to PCB. Broken arrow, P300 for low-exposure

group; solid arrow, P300 for high-exposure group.
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different stages of development.
In the present study we compared groups of children with

low and high prenatal exposures, based on ∑PCBmaternal dur-
ing the last month of pregnancy. Levels of these compounds
assessed in maternal blood were highly correlated with the
levels of these compounds in breast milk as well as with toxic
equivalents of dioxins in breast milk (Koopman-Esseboom et
al. 1994b). In the environment, PCBs, their metabolites, and
related compounds, such as dioxins, are present as complex
mixtures of various congeners that can vary in metabolism
and toxicity. Hence specific effects of either group of com-
pounds are methodologically difficult to detect. We believe,
therefore, that the difference in outcome between the low
and high exposure groups could be related to differences in
exposure levels of other PCB congeners, dioxins, and related
compounds and differences in their metabolites.

Results of this study suggest a negative effect of prenatal
exposure to environmental levels of PCBs and dioxins on P300
latency in a cohort of normally developing children with
mean age around 9 years. Prenatal exposure to PCBs and
dioxins are suggested to slow down mechanisms in the CNS
that evaluate and process relevant stimuli. No evidence was
seen for effects on the P300 of postnatal exposure to PCBs
and dioxins through lactation. Moreover, an accelerating
effect of a longer duration of breastfeeding on P300 laten-
cies was found. Given these results, which suggest a positive
effect of a longer duration of breastfeeding in addition to the
general decline in contamination of breast milk with PCBs and
dioxins in the Netherlands, we conclude that breastfeeding
for a long duration might be beneficial and should not be dis-
couraged. However, these results indicate that at the time of
this study, the level of prenatal exposure to PCBs and dioxins
was high enough to make neurophysiological effects notice-
able in children of school age. Results of this study, there-

fore, emphasize efforts to reduce environmental levels of
PCBs and dioxins and related compounds, to reduce mater-
nal levels of PCBs and dioxins.
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List of abbreviations

BF Breastfed
BFshort/long Breastfed for 6 to 16/longer than 16 weeks
CNS Central nervous system
ERPs Event-related brain potentials
FF Formula-fed
HOME Home Observation for the Measurement of the 

Environment
IUPAC International Union of Pure and Applied Chemistry
PCBs Polychlorinated biphenyls
∑PCBlow/high Low or high prenatal PCB levels   
∑PCBmaternal Sum of PCBs in maternal plasma
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